Order:
  1.  20
    An order-theoretic characterization of the Howard–Bachmann-hierarchy.Jeroen Van der Meeren, Michael Rathjen & Andreas Weiermann - 2017 - Archive for Mathematical Logic 56 (1-2):79-118.
    In this article we provide an intrinsic characterization of the famous Howard–Bachmann ordinal in terms of a natural well-partial-ordering by showing that this ordinal can be realized as a maximal order type of a class of generalized trees with respect to a homeomorphic embeddability relation. We use our calculations to draw some conclusions about some corresponding subsystems of second order arithmetic. All these subsystems deal with versions of light-face Π11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPi ^1_1$$\end{document}-comprehension.
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  2.  20
    Well-partial-orderings and the big Veblen number.Jeroen Van der Meeren, Michael Rathjen & Andreas Weiermann - 2015 - Archive for Mathematical Logic 54 (1-2):193-230.
    In this article we characterize a countable ordinal known as the big Veblen number in terms of natural well-partially ordered tree-like structures. To this end, we consider generalized trees where the immediate subtrees are grouped in pairs with address-like objects. Motivated by natural ordering properties, extracted from the standard notations for the big Veblen number, we investigate different choices for embeddability relations on the generalized trees. We observe that for addresses using one finite sequence only, the embeddability coincides with the (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  23
    Reverse mathematics, well-quasi-orders, and Noetherian spaces.Emanuele Frittaion, Matthew Hendtlass, Alberto Marcone, Paul Shafer & Jeroen Van der Meeren - 2016 - Archive for Mathematical Logic 55 (3):431-459.
    A quasi-order Q induces two natural quasi-orders on $${\mathcal{P}(Q)}$$, but if Q is a well-quasi-order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-Larrecq (Proceedings of the 22nd Annual IEEE Symposium 4 on Logic in Computer Science (LICS’07), pp. 453–462, 2007) showed that moving from a well-quasi-order Q to the quasi-orders on $${\mathcal{P}(Q)}$$ preserves well-quasi-orderedness in a topological sense. Specifically, Goubault-Larrecq proved that the upper topologies of the induced quasi-orders on $${\mathcal{P}(Q)}$$ are Noetherian, which means that they contain no (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation